# synchronized

在java5之前,实现同步主要是使用synchronized。它是Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码。 有四种不同的同步块:

实例方法
静态方法
实例方法中的同步块
静态方法中的同步块   
1
2
3
4

大家对此应该不陌生,所以不多讲了,以下是代码示例

synchronized(this)
// do operation
}   
1
2
3

小结: 在多线程并发编程中Synchronized一直是元老级角色,很多人都会称呼它为重量级锁,但是随着Java SE1.6对Synchronized进行了各种优化之后,性能上也有所提升。

# Lock

rwlock.writeLock().lock();
try {
	// do operation
} finally {
	rwlock.writeLock().unlock();
}    
1
2
3
4
5
6

Lock是一个接口,核心方法是lock(),unlock(),tryLock()。
下面是Lock的一个代码示例:

class Point {
   private double x, y;
   private final StampedLock sl = new StampedLock();
   void move(double deltaX, double deltaY) { // an exclusively locked method
     long stamp = sl.writeLock();
     try {
       x += deltaX;
       y += deltaY;
     } finally {
       sl.unlockWrite(stamp);
     }
   }
  	//下面看看乐观读锁案例
   double distanceFromOrigin() { // A read-only method
     long stamp = sl.tryOptimisticRead(); //获得一个乐观读锁
     double currentX = x, currentY = y; //将两个字段读入本地局部变量
     if (!sl.validate(stamp)) { //检查发出乐观读锁后同时是否有其他写锁发生? 
        stamp = sl.readLock(); //如果没有,我们再次获得一个读悲观锁
        try {
          currentX = x; // 将两个字段读入本地局部变量
          currentY = y; // 将两个字段读入本地局部变量
        } finally {
           sl.unlockRead(stamp);
        }
     }
     return Math.sqrt(currentX * currentX + currentY * currentY);
   }
	//下面是悲观读锁案例
   void moveIfAtOrigin(double newX, double newY) { // upgrade
     // Could instead start with optimistic, not read mode
     long stamp = sl.readLock();
     try {
       while (x == 0.0 && y == 0.0) { //循环,检查当前状态是否符合
         long ws = sl.tryConvertToWriteLock(stamp); //将读锁转为写锁
         if (ws != 0L) { //这是确认转为写锁是否成功
           stamp = ws; //如果成功 替换票据
           x = newX; //进行状态改变
           y = newY; //进行状态改变
           break;
         }
         else { //如果不能成功转换为写锁
           sl.unlockRead(stamp); //我们显式释放读锁
           stamp = sl.writeLock(); //显式直接进行写锁 然后再通过循环再试
         }
       }
     } finally {
       sl.unlock(stamp); //释放读锁或写锁
     }
   }
 }   
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

小结: 比synchronized更灵活、更具可伸缩性的锁定机制,但不管怎么说还是synchronized代码要更容易书写些

# StampedLock

它是java8在java.util.concurrent.locks新增的一个API。
下面是java doc提供的StampedLock一个例子

class Point {
   private double x, y;
   private final StampedLock sl = new StampedLock();
   void move(double deltaX, double deltaY) { // an exclusively locked method
     long stamp = sl.writeLock();
     try {
       x += deltaX;
       y += deltaY;
     } finally {
       sl.unlockWrite(stamp);
     }
   }
  //下面看看乐观读锁案例
   double distanceFromOrigin() { // A read-only method
     long stamp = sl.tryOptimisticRead(); //获得一个乐观读锁
     double currentX = x, currentY = y; //将两个字段读入本地局部变量
     if (!sl.validate(stamp)) { //检查发出乐观读锁后同时是否有其他写锁发生? 
        stamp = sl.readLock(); //如果没有,我们再次获得一个读悲观锁
        try {
          currentX = x; // 将两个字段读入本地局部变量
          currentY = y; // 将两个字段读入本地局部变量
        } finally {
           sl.unlockRead(stamp);
        }
     }
     return Math.sqrt(currentX * currentX + currentY * currentY);
   }
	//下面是悲观读锁案例
   void moveIfAtOrigin(double newX, double newY) { // upgrade
     // Could instead start with optimistic, not read mode
     long stamp = sl.readLock();
     try {
       while (x == 0.0 && y == 0.0) { //循环,检查当前状态是否符合
         long ws = sl.tryConvertToWriteLock(stamp); //将读锁转为写锁
         if (ws != 0L) { //这是确认转为写锁是否成功
           stamp = ws; //如果成功 替换票据
           x = newX; //进行状态改变
           y = newY; //进行状态改变
           break;
         }
         else { //如果不能成功转换为写锁
           sl.unlockRead(stamp); //我们显式释放读锁
           stamp = sl.writeLock(); //显式直接进行写锁 然后再通过循环再试
         }
       }
     } finally {
       sl.unlock(stamp); //释放读锁或写锁
     }
   }
 }
    
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

小结:
StampedLock要比ReentrantReadWriteLock更加廉价,也就是消耗比较小。

# StampedLock与ReadWriteLock性能对比

是和ReadWritLock相比,在一个线程情况下,是读速度其4倍左右,写是1倍。
下图是六个线程情况下,读性能是其几十倍,写性能也是近10倍左右:
img